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Automatic detection of the belt-like region in an image
with variational PDE model
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In this paper, we propose a novel method to automatically detect the belt-like object, such as highway,
river, etc., in a given image based on Mumford-Shah function and the evolution of two phase curves. The
method can automatically detect two curves that are the boundaries of the belt-like object. In fact, this is
a partition problem and we model it as an energy minimization of a Mumford-Shah function based minimal
partition problem like active contour model. With Eulerian formulation the partial differential equations
(PDEs) of curve evolution are given and the two curves will stop on the desired boundary. The stop term
does not depend on the gradient of the image and the initial curves can be anywhere in the image. We also
give a numerical algorithm using finite differences and present various experimental results. Compared
with other methods, our method can directly detect the boundaries of belt-like object as two continuous
curves, even if the image is very noisy.

OCIS codes: 100.0100, 150.0150.

The automatic detection of a belt-like region in an image
is important. Many important object features in natural
scenes or tissues of human body, such as rivers or blood
vessels, correspond to such regions. Several approaches,
like edge collection[1], active contour methods[2,3], and so
on, are widely applied in the object segmentation and
recognition. Approaches based on edge detection have
some drawbacks. In fact, up to date, the edge detec-
tion is most frequently used to extract thin-belt-like road,
river or other objects[4,5]. Edge detection as the essen-
tial part of these algorithms is sensitive to noises in an
image. Denoising and object enhancing of the noisy im-
ages, as image pre-processing in these approaches, are
always necessary for the correct object detection. When
the image edges are extracted based on image gray gra-
dient, they contain not only the boundaries of the object
to be detected but also the boundaries of the other ob-
jects. The belt-like object must be identified among the
detected edges, which usually include pseudo-edges and
much more other edges that do not belong to the object
to be detected. Due to the noises and the complex tex-
ture, the belt-like object usually cannot be detected as
a continuous edge. Therefore, the post-processing, such
as mathematical morphology transforms[6] or curve ap-
proximation, is also needed for the connectivity of edges
to form the whole boundary of the belt-like object to be
detected.

In 2001, based on Mumford-Shah segmentation
techniques[7] and the level set method, Chan and Vese[3]

proposed the active contour model without edge, also
called C-V model, that can detect contours both with[8]

or without gradient. In addition, in that model the initial
curve can be anywhere in an image. In the active contour
model, the contour to be detected is usually supposed to
be a closed curve, and with level set method it is repre-
sented as the zero level set of a function defined in higher
dimensions. It overcomes the drawbacks of the classic ac-
tive contour models (or snake models) that are based on
edge-detector, dependent on initial curve location and

sensitive to noise. Because the belt-like objects appear
in an image as two open curves that are not intersected,
with the C-V model some contours of other objects, es-
pecially some closed contours, are also detected. After
contour detection it is also required to recognize that
curve is the object boundary.

Based on Mumford-Shah model[7] and variational PDE
model and inspired by C-V model, with two phase curves
we proposed a novel method to automatically detect the
boundaries of the belt-like object in a given image. The
evolving curves are two open curves and do not need to be
represented as the zero level set of a function defined in
higher dimensions. It is a development of the technique
used in Ref. [9]. The initial curves, which are usually
chosen as two parallel straight lines, can be anywhere in
the image and they evolve and stop on the boundaries of
the belt-like object in an image, even for a noisy image.
In this way the belt-like object can be very well detected
and preserved. Compared with classic snake models[10],
which can also be used in the detection of an open curve
boundary with their initial curves being near the bound-
aries of the object in noisy image, our model is more
robust against image noise and its initial curve can be
anywhere.

The Mumford-Shah piecewise smooth segmentation is
defined by[7]

inf
u,Γ

EMS[u,Γ|u0] =
∫
Ω

|u− u0|2dx

+μ
∫

Ω\Γ

|∇u|2dx+ ν · L(Γ), (1)

where u0 : Ω → � is a given image, μ and ν are the
positive parameters. The solution image u obtained by
minimizing this function is formed by smooth disjoint re-
gions Ri and with their boundaries denoted by Γ, where⋃
i

Ri = Ω\Γ. L(Γ) represents the length of Γ. It allows
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for segmenting an image into some disjoint homogenous
regions with smoothly varying intensities and the bound-
aries with sharp varying intensities. This model has been
used extensively in image segmentation, denoising, in-
painting, and computer vision.

The detection of the belt-like object in a given image
is the process of seeking two open curves running across
this image that divide the image into three homogenous
regions, as shown in Fig. 1.

The image is denoted as a rectangular region Ω: (0, a)×
(0, b). The analytical equations of the curves positioned
above and below are y = φ0

1(x), y = φ0
2(x), 0 ≤ x ≤ a,

respectively.
The three regions separated by the two curves are⎧⎪⎪⎨
⎪⎪⎩

Rabove(C0
1) = {(x, y) ∈ Ω : y > ϕ0

1(x)}
Rabove(C0

2) and below(C0
1) = {(x, y) ∈ Ω :

y > ϕ0
2(x) and y < ϕ0

1(x)}
Rbelow(C0

2) = {(x, y) ∈ Ω : y < ϕ0
2(x)}

, (2)

where C0
1 denotes the curve in the upper part of the im-

age and C0
2 is the lower one.

We assume that the image u0 is made up of three
regions of approximatively piecewise-constant intensities
(see Fig. 2) and from above to below they have distinct
values c01, c

0
2, c

0
3.

Assume C1 and C2 denote the two curves above and
below in the above image. The meanings of c1, c2, c3 are
similar to those of c01, c

0
2, c

0
3.

Now we consider the fitting term

Fit(C1, C2) =
∫

above(C1)

|u0(x, y) − c1|2dxdy

+
∫

below(C2)

|u0(x, y) − c3|2dxdy

+
∫

above(C2) and below(C1)

|u0(x, y) − c2|2dxdy. (3)

Fig. 1. Two white curves separate the image into three ho-
mogenous regions.

Fig. 2. Image with three parts and initial curves.

When C1 = C0
1 , C2 = C0

2 , Fit = 0. So if we want to
segment the image, we only need to minimize “Fit”.

Equation (3) can be thought as a piecewise constant
segmentation that is a particular case of the Mumford-
Shah model and called the minimal partition problem.

Adding the length term into Eq. (3), we have the com-
plete fitting term of our model:

Fit(c1, c2, c3, C1, C2) = μ(L(C1) + L(C2))

+λ(
∫

above(C1)

|u0(x, y) − c1|2dxdy

+
∫

below(C2)

|u0(x, y) − c3|2dxdy

+
∫

above(C2) and below(C1)

|u0(x, y) − c2|2dxdy).(4)

Now using the Heaviside function H(x), the one-
dimensional (1D) Dirac measure δ(x) and the curve
definition y = φ1(x), y = φ2(x), 0 ≤ x ≤ a, the fitting
term, also called energy function, has the form as

Fit(c1, c2, c3,C1,C2) =μ(
∫

[0,a]

√
(1 + (

dϕ1(x)
dx

)2)dx

+
∫

[0,a]

√
(1 + (

dϕ2(x)
dx

)2)dx))

+λ
∫
Ω

|u0(x, y) − c1|2H(y−ϕ1(x))dxdy

+λ
∫
Ω

|u0(x, y) − c3|2(1 −H(y−ϕ2(x)))dxdy

+λ
∫
Ω

|u0(x, y) − c2|2(1 −H(y−ϕ1(x)))H(y−ϕ2(x))dxdy,

(5)

where

H(x) =
{

1, if x ≥ 0
0, if x < 0 , δ(x) =

{
1, if x = 0
0, if x �= 0 . (6)

The constants c1, c2, and c3 are given by

c1 =

∫
Ω

u0H(y − ϕ1)dxdy∫
Ω

H(y − ϕ1)dxdy
,

c2 =

∫
Ω

u0(1 −H(y − ϕ1))H(ϕ2)dxdy∫
Ω

(1 −H(y − ϕ1))H(ϕ2)dxdy
,
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c3 =

∫
Ω

u0(1 −H(y − ϕ2))dxdy∫
Ω

1 −H(y − ϕ2)dxdy
. (7)

So our model can be written as the minimization prob-
lem inf

c1,c2,c3,C1,C2
Fit(c1, c2, c3,C1,C2).

In order to compute the associated Euler-Lagrange
equation, we adopt the regularized versions of the
functions H and δ, as denoted by Hε and δε

[3], and
δε(x) = dHε(x)

dx .
Keeping c1, c2, c3 fixed, we minimize

Fit(c1, c2, c3,C1,C2). The associated Euler-Lagrange
equation for ϕ1, ϕ2 with parameterizing the descent
direction by an artificial time t >= 0 is deduced.

The set of equations are

∂ϕ1(t, x)
∂t

= μ
∂

∂x
(

1√
1 + (∂ϕ1(t,x)

∂x )2
(
∂ϕ1(t, x)

∂x
))

+λ((u0(x, ϕ1(t, x)) − c1)2

−H(ϕ1(t, x) − ϕ2(t, x))(u0(x, ϕ1(t, x)) − c2)2), (8)

∂ϕ1(t,0)
∂x = 0 and ∂ϕ1(t,X0)

∂x = 0 (the boundary conditions),
ϕ1(0, x) = ψ0(x) (the initial condition);

∂ϕ2(t, x)
∂t

= μ
∂

∂x
(

1√
1 + (∂ϕ2(t,x)

∂x )2
(
∂ϕ2(t, x)

∂x
))

+λ(H(ϕ1(t, x) − ϕ2(t, x))

+(u0(x, ϕ2(t, x)) − c2)2 − (u0(x, ϕ2(t, x)) − c3)2), (9)

∂ϕ2(t,0)
∂x = 0 and ∂ϕ2(t,X0)

∂x = 0 (the boundary conditions),
ϕ2(0, x) = η0(x) (the initial condition).

Let the steady solution of Eqs. (8) and (9) be ϕ1(T, x)
and ϕ2(T, x). Then the boundary curves of the belt-like
region are y = ϕ1(T, x) and y = ϕ2(T, x).

In our experiments, we assume ϕ1 > ϕ2 so that the
Heaviside function H(x) can be eliminated from Eqs.
(8) and (9). First we need to present some definitions:
h, the space step; Δt, the time step; and xi = ih
(0 =< i <= a) being the points evenly distributed. Let
φn

1i = φ1(nΔt, ih) be an approximation of φ1(t, x) with
n > 0. The finite differences of Eqs. (8) and (9) are
denoted as

Δ−ϕι = ϕι − ϕι−1,Δ+ = ϕι+1 − ϕι. (10)

The dicretization of Eq. (8) is

ϕn+1
1i − ϕn

1i

Δt
=

μ

h2
Δ−(

Δ+ϕ
n
1i√

1 + (Δ+ϕn
1i

h )2
)

+λ((U0(ih, ϕn
1i) − c1(ϕn

1i))
2 − (U0(ih, ϕn

1i) − c2(ϕn
1i))

2).

(11)

The discretization of Eq. (9) is similar to that of Eq.
(8).

The initial curves can be anywhere. In our experi-
ments, the y axis points downward. As to the other
parameters, h = 1, Δt = 0.03, μ = 0.0004 × 255 × 255,
λ = 0.0006 × 255 × 255. Figure 3 shows the process of
detecting the boundaries of the river in the grassland.

In the following figures the middle phase figures will
not be displayed. The algorithm proposed here has been
used in Fire Watch to segment the forest areas of an
image (see Fig. 4). In Fig. 5, it is easy to understand
the ability of the algorithm against noise. Figure 6 is a
noised image with a river in it.

In this paper, we propose a new method which is use-
ful to detect a belt-like region running through an image
horizontally. It is effective and insensitive to noise. It

Fig. 3. (a) Original image; (b) evolving curve; (c) resulting
image.

Fig. 4. (a) Original image and (b) segmented image.

Fig. 5. Image polluted by noise and the detection result.



May 10, 2007 / Vol. 5, No. 5 / CHINESE OPTICS LETTERS 273

Fig. 6. (a) Noised image with a river in the middle and (b)
the detection result.

also has some limitations and disadvantages. The time
needed for processing is not satisfactory, slightly long in
practice, especially when the intensity differences of the
three parts of the image are small or the middle part is
not broad enough.

Still much improvement is possible. For example, the
curves we get in the experiments are those that can be
represented by y = ϕ(x). We hope the curves could be
denoted in a more general form. The further result will
be published in our future articles.

Y. Tang is the author to whom the correspondence
should be addressed, his e-mail address is ytang@sia.cn.
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